
OMERO deployment on
your platform

roadmap & technical details

Guillaume Gay

February 22

Contents

Introduction

The big picture

Data life cycle

Data big and small

Roles

Authentication and user management

PlatformOmeroAdmin priviledges

GroupOmeroAdmin priviledges

OMERO Deployment

Pre-deployment

Test deployment

Production deployment

Legacy data

Technical overview

Docker

Hosting

Benchmarking and monitoring

Software updates

Backup and recovery

Archiving

Import workflow

Traditional workflow for small data volumes

Automated worflow for big data

Import steps

1. Data is writen to the buffer storage.

2. Data upload

3. Import

4. Delete

Reusing and sharing data

Accessing your data

Webclient

ImageJ, napari plugins and APIs

⊕

file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#introduction
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#the-big-picture
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#data-life-cycle
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#data-big-and-small
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#roles
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#authentication-and-user-management
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#platformomeroadmin-priviledges
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#groupomeroadmin-priviledges
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#omero-deployment
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#pre-deployment
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#test-deployment
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#production-deployment
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#legacy-data
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#technical-overview
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#docker
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#hosting
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#benchmarking-and-monitoring
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#software-updates
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#backup-and-recovery
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#archiving
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#import-workflow
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#traditional-workflow-for-small-data-volumes
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#automated-worflow-for-big-data
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#import-steps
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#data-is-writen-to-the-buffer-storage.
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#data-upload
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#import
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#delete
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#reusing-and-sharing-data
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#accessing-your-data
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#webclient
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#imagej-napari-plugins-and-apis


Sharing data for analysis

Publishing data

Introduction
The aim of this document is to outline a generic deployment strategy for microscopy

bioimage data management at the various nodes of the France BioImaging infrastructure. It is

by no means definitive, and will need a carefull adaptation to your local context.

It should be of interest to anyone involved in the bioimage data life cycle within the

microscopy facility.

The source of this document can be found on FBI-data gitlab. The reader is encouraged to

contribute corrections or remarks as issues there. The repository linked above will be

privately forked for each node in a sub-group of the FBI.data group on the gitlab, and will be

used to store site specific information (network mappings, roles indentifications, etc.).

The big picture
In short, our goal is to take the microscopy data out of the institues and store them in a

shared facility. The agreed upon technical solution for that is to install an OMERO service in a

data-center affiliated with the node.

You can find out more about omero on their website, whether you are a scientist or part of

the support staff.

OMERO is composed of a server and a set of tools widely used to manage microscopy data. It

is open source and managed by the openmicroscopy consortium.

The main expected benefits of this deployment are:

A more cost and energy effective storage.

Better data security.

Mutualised management, lower workload for current data managers and IT in the

institutes.

Better data availability and conservation.

Easier data sharing with colaborators and data analysts.

For published data, better complience with the FAIR principles.

Data life cycle
A detailed version of the data life cycle will be given in the platform’s Data Management Plan

(DMP), which will be constructed with the help of FBI.data in coordination with this project

(see here details about that DMP).

file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#sharing-data-for-analysis
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/html2pdf1028794-0.html#publishing-data
https://gitlab.in2p3.fr/fbi-data/OmeroDeployments
https://www.openmicroscopy.org/omero/
https://www.openmicroscopy.org/omero/scientists/
https://www.openmicroscopy.org/omero/institution/
https://dsw.france-bioinformatique.fr/projects/30bc910d-60c1-4a49-a77f-17db454bae91


Here is a rough sketch of the steps in the microscopy data life cycle:

A

B

microscope

user	space

DBManaged	
Repository

metadataraw	data

E

OMERO	server

backup

G D

A Acquire	raw	data

B Import

D

Analyse	dataE

Share	outside

Backup

C

Createsecondarydata

Annotate

F

G

ArchiveH

C

F

client

client

client

archive

H

Outline of the microscopy data cycle

The most complex aspect of this system is the import stage, because potentially big volumes

of data have to be copied, displaced over a potentially heterogenous network, and imported

into OMERO, which can be a resource intensive step.

Data big and small
Yet, a general observation from microscopy data managers is that most microscopy platform

users do not generate large amount of data, as microscopy is not their central research tool,

or their experminents do not need data intensive modalities, while a minority of users

generate big amounts of data, often on specific instruments.

To account for that, we will distinguish between small and big data workflows. Big data can

further be devided into two famillies:

Many small files — for exemple in screening experiments, or with single molecule

microscopy raw data. this could correspond to 10 000 files or more, less than 10 Mo each



Few large files — as in long term 3D + t live imaging, or multiplexed whole slide images

this could correspond to hundreds of more than 1 Gb files

Both usecases can pose different chalenges and have different bottlenecks.

Let’s hope that we do not have to deal with the many large files usecase too much.

In the following, we first define a set of roles that will allow us to identify the various actors

involved in the project. We’ll then go in more details into the proposed (generic) deployment

strategy, before discussing advanced import scenarios and methods, and eventually

annotations.

Roles
In this first section, we define various “roles” implied during the deployment process and in

production. One person can have mutliple roles, and each role can be fullfield by multiple

persons.

We assume that the researchers are organized in Groups (although one researcher can

belong to several groups). We distinguish 5 organisation levels: The FBI.data node, the local

node, the datacenter, the platform and the institute or lab. Roles at each of those levels are

detailed bellow.



Name Description shorthand

FBI.data

FBIDataHead Operational manager of the FBI.data Node FH

FBIOmeroSpecialist OMERO system expert FOS

FBIDeploymentSpecialist Deployment expert FDS

FBIAppsSpecialist Analysis worflows integration expert FAS

—-

FBI Node

NodeHead Local coordinator of the FBI Node NH

NodeOmeroInstructor OMERO instructor NOI

—-

Datacenter / mesocentre

DataCenterComputingIT Computing / virtual machine manager DCC

DataCenterStorageIT Storage and network management manager DCS

—-

Platform

PlatformHead The platform director PH

PlatformManager Operational manager of the platform PM

PlatformOmeroAdmin OMERO admin at the platform level POA

PlatformIT IT manager at the platform level PIT

—-

Lab / Institute

LabSysadmin The institute’s IT department contact LIT

LabHead The institute’s head LH

—-

Research Group / Team

GroupLeader The research group leader GH

GroupOmeroAdmin OMERO admin for the research group GOA

GroupExperimenter The data producer at the microscope GE

Attribution should be clear to all these roles in your institution or platform, except maybe for

the GroupOmeroAdmin. This person (who can be the group leader, but often will not) is the

point of contact in a given group for the omero adminstration. He / she has restricted

priviledges in the omero instance, and will be in charge of orchestrating data and user

management at the group level, as detailed in the next section. It is up to the team to appoint

this delegate.



This role list is focused on the deployment step, and some aspects of the data life cycle, as

rich metadata annotation, data analysis, or data curation roles are not mentionned here.

Authentication and user management
In the short term, we will not provide a global or federated authentication strategy. Rather,

authentication will be setup locally. Depending on the context, we might be able to use LDAP

(possibly from various institutions) to identify users and groups. In parallel to that, manual

user and group creation will be necessary (if only for outside collaborators). Later user

management (changing groups, deactivating users) tasks also need to be performed.

This task will be destributed between the PlatformOmeroAdmin, who will be in charge of the

group creation (as well as the GroupOmeroAdmin user creation), and the GroupOmeroAdmin,

who will be in charge of the user management within a group. Note that those actions are

easily performed on the webclient admin interface. In a small research team with three

person, the head of the team will assume the omero admin role, but in bigger teams, it might

be an engineer or technician, ideally someone with as much a stable position as possible.

Recommended settings for the priviledges of both roles are detailed bellow — this is

configured at the user creation stage (see details on those priviledges here).

PlatformOmeroAdmin priviledges

GroupOmeroAdmin priviledges

OMERO Deployment
Here is an indicative Gantt chart of the deployment steps, for an overall duration of about 4

Sudo

Write Data

Delete Data

Chgrp

Chown

Create and Edit Groups

Create and Edit Users

Add Users to Groups

Upload Scripts

Sudo

Write Data

Delete Data

Chgrp

Chown

Create and Edit Groups

Create and Edit Users

Add Users to Groups

Upload Scripts

https://docs.openmicroscopy.org/omero/5.6.3/sysadmins/restricted-admins.html


months:

months
weeks

Gantt chart of the deployment process

It is comprised of 3 phases that are detailed bellow:

Pre-deployment
During this phase, we study the local context and match the roles outlined above to actual

persons, among which two or three test teams who will take part in the next stage of the

deployment.

Once this match making is complete, we setup a meeting with all the technical actors and the

test teams to launch the test deployment. During this phase, we evaluate the data volumes

and the data flow rate for the node, in order to specify the infrastructure.



Task Involved roles

Transmit Outline Document to the PlatformManager FOS

Meeting between @OmeroSpecialist & @PlatformManager FOS, PM

Roles matching with local actors – of which 2 or 3 early adopter teams PM

Startup meeting with all the identified actors
all local actors,

FOS, FDS

Volumes evaluation, specification of test machine and network architecture
FDS, DCC, DCS,

PM, LIT

Validation of the system spectification and design
FDS, FOS, DCC,

DCS

Test deployment
This omero instance mimics the production deployment and is used as a first step to study

standard practice and edge cases. At this step, it is important to identify potentially complex

datasets. We setup and test import workflows and perform benchmark on the challenging

datasets. Local actors are trained in their role as omero administrators.

During this phase are also sorted out the various aspects of data access permissions and

authentication.

At that stage, an access to the deployment infrastructure must be provided to the

FBIDeploymentSpecialist (FDS).

The training of the test team will be done by both the NodeOmeroInstructor and the

FBIOmeroSpecialist to also train the trainer.

Task Involved roles

Test machine deployment FDS, DCC, DCS

Test teams training and onboarding NOI, FOS

Import data from test teams, benchmarking with chalenging data
GE, GOA, PM,

DCC

Feedback on test phase from all actors
all local actors,

FOS

Production deployment
Once the lessons from the test deployment have been gathered, and after a feedback session

with the test teams and representatives of the whole user community, the production server

is deployed and new teams are enrolled in the project. Regular onboarding sessions are then

organised to progressively grow the userbase.

Automated monitoring as well as “in person” oversight of the system is initially performed by



the OmeroSpecialist and the PlaftormOmeroAdmin.

We propose a monthly meeting between the FBI.data team and the local team during the

first year of the deployment to make sure any issue is caught and solved rapidly.

Task Involved roles

Specification of production machine FDS

Deployment of production machine FDS, DCC, DCS

2nd wave of training & onboarding NOI

Early monitoring PM, FOS, FDS

Feedback on data life cycle so far
all local actors,

FOS

Legacy data
In the nodes where OMERO databases are already in use, an extra step is to transfer the

legacy system to its new home. This step will be very dependant on the local context and will

surely be work intensive for the FBIOmeroSpecialist and the PlatformOmeroAdmin.

Furthermore, we might want to perform this step on the test server, which might delay

significatively the deployment of the production server.

Technical overview
In the section we give implementation details for the deployment, administration and

maintenance of the service. We discuss data import and dataflow in more details in the next

section.



datacenter

OMERO
SERVER

database OMERO
webclient

docker	engine

storage

host	server

mesocentre

microscope
computer

storage

microscopy	platform

small
data

B

B'

E
APIs

G
backup

G'

A temporary
storage

big
data

B'

C

D

B

user's	computer

storage

F

A Acquire	raw	data

B Import

D

Analyse	dataE

Share	outside

Backup

C

Createsecondarydata

Annotate

F

G

ArchiveH

long-term
storage

H

institute

Data cycle with the underlying computing infrastructure

The above sketch depicts 4 local networks: the platform, the datacenter, the mesocenter and

the instute, although e.g. datacenter and mesocenter might be merged in some cases.

The mesocenter hosts the OMERO host server, and omero itself is deployed as 3 containers.

Docker
We decided to use docker as a distribution platform. As the container layer allows to be

independent of the host system, it is easy to propose a standard solution to all the nodes.

We will use a fork of the docker example repository distributed by openmicroscopy. It uses 

docker-compose to create three containers for the omero server itself, the webclient, and

the prostgresql database. For increased security podman and podman-compose can be used to

host trully root-less containers.

https://www.docker.com/products/container-runtime
https://github.com/ome/docker-example-omero/
https://docs.docker.com/compose/
https://podman.io/


At the local level, the main task will be to specify correct environment variables for the

domain names, port numbers and possibly authentication methods.

OMERO
SERVER

database OMERO
webclient

host	server

DB	
storage

:4064

4064:

:4
08
0

44
3:

raw	data
storage

volume:volume:

Detailed view of the container and storage architecture

The storage for both the database and the raw data are mounted through a volume

statement in the docker-compose file (see details here). While the precise mount

configuration will likely depend on the datacenter storage vendor, it is important to notice

that the (postgresql) DB storage needs to be very I/O efficient, so SSD / Nvme, but will not

require high volumes - bellow the Tb level. As data on the raw data storage is more

heterogenous, maybe tiered storage if feasible would be interesting. Deduplication

strategies where reported to lower the volume of the occupied data.

Hosting
These docker containers will be hosted by the mesocenter, preferably on a virtual machine to

ease later upscalling or migration of the service. The mesocenter or the node will also need to

provide a fully qualified domain name to the webclient instances (both test and production).

We will use traefik or caddy as reverse proxies for the containers to provide encrypted (https)

access to the services.

Benchmarking and monitoring
As discussed, we will setup benchmarks at deployment time to identify possible bottelnecks.

We will setup grafana and prometheus to monitor the system use, and help detect issues

with the system early.

https://docs.docker.com/storage/volumes/
https://traefik.io/
https://caddyserver.com/
https://grafana.com/
https://prometheus.io/download/


Software updates
One of the advantages of docker is the ease with which software updates can be performed.

Once the parent image is updated, docker-compose	pull and docker-compose	up are

enough to update the services (with no restart).

We will deploy updates in 3 steps:

1. Update the FBI docker images from upstream, deploy the update on the FBI test and

development instances.

2. Deploy the updated images on the local test deployment

3. Deploy on the production services.

Test cases will be setup at each of those steps to ensure service integrity.

Should database updates be performed, we will test them in the same order.

Backup and recovery
Raw data backup is assumed to be a service provided by the datacenter (with onsite and

offsite redundancy). On our side, we will provide standardised cron jobs to perform SQL

dumps of the OMERO database, which is enough to restore service. Standard daily, weekly

and monthly rolling backups will be performed.

A crash and restore test will be regularly performed to ensure data security.

Archiving
The question of long term archiving of the data depends on the local storage infrastructure.

We will help setup a strategy to sort short, mid and long term storage data in a transparent

way to the user, either through tiered storage if it is available in the infrastructure, or

through the configuration of an irods instance between the storage and the omero instance.

Import workflow
Traditional workflow for small data volumes
The traditional method to import data into OMERO consists in using either the desktop client

OMERO.Insight or the equivalent ImageJ / Fiji plugin. This is the advised import method for

small data volumes. This import can be performed directly from the microscope computer, or

at a latter step from a buffer storage within the institute or platform networks. Once

imported, the raw data can be deleted by the experimenter.

This method has the disadvantage of requiering a few actions by the users, and thus might

not be very favorable to a high adoption rate. Strategies to overcome these limitations will be

https://en.wikipedia.org/wiki/Automated_tiered_storage
https://irods.org/
https://omero-guides.readthedocs.io/en/latest/upload/docs/import-desktop-client.html
https://omero-guides.readthedocs.io/en/latest/fiji/docs/index.html


discussed after the deployment, along with discussions on annotation and curation methods.

Automated worflow for big data
There are several draw-backs with the legacy import mehod in a big data use case:

If the client is installed on the microscope, import must be performed during acquisition or

after. If import is long, it will block the access to the acquisition machine.

If the client is installed on the user’s computer, this requires the user to perform the

import process in a second step. It can be tedious for big or complex datasets.

Furthermore, the raw data is then available locally to the user at this stage, lowering the

insentive to use OMERO.

With that import method, a hard copy of the data is performed at import time. This can be

ressource intensive both on the network and on the omero server itself.

More recently, automated import tools have been made available by openmicroscopy.

You can see here a clear presentation of the various import methods available to us. A more

detailed discussion of those scenarii is available here.

Our objective is to avoid unnecessary data copies, and prevent the import process and I/O to

block the server or the microscope. Here we propose an import workflow with an onsite

buffer drive where data is temporary stored before it is imported.

Import steps

https://downloads.openmicroscopy.org/presentations/2017/Users-Meeting/Workshops/Import/#/
https://docs.openmicroscopy.org/omero/5.6.3/sysadmins/import-scenarios.html


microscope	2

buffer	storage

microscope	1

A B
user user

A B
user user

Platform	network

A B
user user

A Buser user

A B
user user

import

omero	ManagedRepository

Datacenter	network

synchronize

write write

omero	server	FS

microscope	1 A
user

A
user

write

A
user

upload import

delete delete

1 2 3

4'4

Graphical view of the import workflow

Let’s detail the 4 steps outlined above:

1. Data is writen to the buffer storage.

A shared directory from the buffer storage is mounted on each microscope (as a Windows

network shared drive). Detailed access rights and structure of this directory will depend on

the platform policy and network architecture. What is needed here is that the user has write

access to a directory in that drive. Ideally, the user should have only write once access to that

drive.

We propose that this directory has a data lifetime limit (e.g. 2 months) to ensure its volume

stays limited.



2. Data upload

This is the most I/O intensive step of the process, as acquired data needs to be transported to

the datacenter. Here, infrastructure adaptations might be necessary to provide sufficient

bandwidth for efficient transfer.

Pending discussion with all the IT staff involved, we propose that rsync is used to

synchronise the data between the buffer storage and the datacenter. Fine grained

configuration can be performed to optimise that stage. The import daemon needs read /

write access to the buffer drive.

3. Import

Once the data is copied to the OMERO server file system, we can use the logs of the upload

stage (e.g. rsync logs) to trigger import into omero.

We propose to use the CLI inplace import with hard-linking import

-ln. This has the benefit of not copying the raw data.

We propose to develop an omero script for the omero web client to allow the user to trigger

both data synchronization and data import by choosing the directory to be imported. This

action will send an import task, added to a queue in an import manager daemon.

4. Delete

Once the data is imported, it can be deleted from the synched directory (the hard link ensures

the data is still accessible to OMERO). Deletion can be performed first on the buffer storage

— either after some delay as discussed above, or manually. The next synchronisation will

propagate the deletion to the omero server synched directory, while keeping a reference to

the raw data in the ManagedRepository.

Alternatively, data deletion can be performed automatically at the end of the import

procedure (with import

-ln_rm).

Once the pointer to the data in the synched directory on the server is deleted, the

synchronisation process propagates the deletion to the buffer storage.

We propose to favor the first method, as the synchronization process then only needs read

access to the buffer storage, thus keeping data security responsabilities well separated.

At the time of this writing, this process is still at the project stage. Although we hope to have

proof of concept soon, the rest of the deployment is not dependent on its availability. Should

the need arise, custom import script can be deployed for special cases. It is still important to

engage the discussion on network and drive architecture at the interface between the

datacenter and the platforms with this project in mind.

https://docs.openmicroscopy.org/omero/5.6.3/sysadmins/in-place-import.html#ln-hard-linking
https://docs.openmicroscopy.org/omero/5.6.3/sysadmins/in-place-import.html#ln-rm-moving


Reusing and sharing data
Accessing your data
Webclient

OMERO provides a choice of clients. The first interface to the data will be the webclient. In

our setup, it is deployed as a docker container within the docker-compose. It should be

accessible form anywhere through https (port 443), with a fully qualified domain name

(e.g. https://omero.example.uni). Note that it is possible to spawn multiple webclients for the

same omero server, as long as a single one has write access to the DB. Read only webclients

can be userfull for public data sharing or display.

By default, several tools will be installed with the webclient, such as OMERO.figure that

allows to create figures directly from the browser, and is known to be apreciated by the

scientists. Such tools will be curated by the FBI.data team in collaboration with the platforms.

The intensive use of webclient scripts to perform analysis tasks is discouraged, as it draws

resources from the webserver container. Help with setting up computing workflows will be

available from the FBIAppsSpecialist.

ImageJ, napari plugins and APIs

As allready discussed, a ImageJ plugin allows to interact with OMERO. It is also possible to

use APIs in multiple languages (Python, Matlab, etc.). For this, OMERO uses the IceSSL

transport layer. This secure tool works through a custom port (4064 by default) that needs to

be accessible to the users. There must be a discussion with the datacenter administrators to

open that port for external access on the OMERO server instance.

Sharing data for analysis
In the framework of the collaboration with a data analyst external to the institute, the easiest

way to share data is to manually create an OMERO account for him and add this new user to

the group. This will be performed by the GroupOmeroAdmin. See here for documentation on

the various data sharing methods.

Publishing data
The solution generally advised to share plublic data is to deploy a second omero-webclient

container with readonly access to the database, and then follow the procedure detailed here.

 — February 22 — 

https://france-bioimaging.org/node/bioimage-informatics/
https://gitlab.in2p3.fr/fbi-data/OmeroDeployments
https://www.openmicroscopy.org/omero/features/share/
file:///home/guillaume/Dev/OmeroDeployments/build/pdf/priviledges

